Multitarget search on complex networks: A logarithmic growth of global mean random cover time
نویسندگان
چکیده
منابع مشابه
Multitarget search on complex networks: A logarithmic growth of global mean random cover time.
We investigate multitarget search on complex networks and derive an exact expression for the mean random cover time that quantifies the expected time a walker needs to visit multiple targets. Based on this, we recover and extend some interesting results of multitarget search on networks. Specifically, we observe the logarithmic increase of the global mean random cover time with the target numbe...
متن کاملCover time for random walks on arbitrary complex networks
We present an analytical method for computing the mean cover time of a discrete-time random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity is particularly important for random search processes and target localization on network structures. Based on the global mean first-p...
متن کاملEstimating Mean First Passage Time of Biased Random Walks with Short Relaxation Time on Complex Networks
Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT) of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other...
متن کاملGlobal mean first-passage times of random walks on complex networks.
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a min...
متن کاملRandom walks on networks: cumulative distribution of cover time.
We derive an exact closed-form analytical expression for the distribution of the cover time for a random walk over an arbitrary graph. In special case, we derive simplified exact expressions for the distributions of cover time for a complete graph, a cycle graph, and a path graph. An accurate approximation for the cover time distribution, with computational complexity of O(2n) , is also present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos: An Interdisciplinary Journal of Nonlinear Science
سال: 2017
ISSN: 1054-1500,1089-7682
DOI: 10.1063/1.4990866